JAJB-1.1.0 Annotation Configuration Documentation

What do you need?
Just the two JAJB annotation: @EntityAnnotation and @FieldAnnotation.

1) @EntityAnnotation: is a class annotation that you can apply to the bean you want to map; it has only one
attribute (extends) not mandatory. The extends attribute says witch is the jgb id of the superclass; its vaue
can be the id of a class described in xml context (for example: ‘$person’), or the id of another class described
using annotation (for example: ‘ @it.example.person’) or the id of a class not described at al (for example:
‘#it.example.person’).

Remember that the jgjb id of an annotated class stars always with ‘@’ and continues with the full class name;
thejajb id of anot described class starts always with ‘# and continues with the full class name; thejabid of a
class described in the xml context starts aways with ‘$" and continues with the choosen name.

Now let’s ook to the following example:
We have the class Person and the class European that is subclass of Person:

1. you can describe both them in xml context like below:

<j aj b- mappi ngs>
<entity id="$person" type="it.test.bean. Person">
<fields>
<field name="nane" type="java.lang.String"/>

</fields>
</entity>

<entity id="$european” type="it.test.bean. European" extends="$person">

<fields>
</field;;
</entity>

</j aj b- mappi ngs>
2. you can describe Person in xml context and European using @EntityAnnotation:

<j aj b- mappi ngs>
<entity id="$person" type="it.test.bean.Person" >

<fields>
T
</entity>

</j aj b- mappi ngs>

@Ent i t yAnnot at i on(ext end="$per son")
public class European extends Person {

}

3. you can describe Person using @EntityAnnotation and European in xml context:

<j aj b- mappi ngs>
<entity id="$european" type="it.test.bean. European”
extends="@t. bean. test. Person">

<fields>
T
</entity>

</j aj b- mappi ngs>

@nti tyAnnot ati on
public class Person {

}
4. you can describe both Person and Eurpean using @EntityAnnotation:

@nti tyAnnot ati on
public class Person {

}

@ntityAnnotati on(extend="@t. bean.test.Person")
public class European extends Person {

}

5. you can use also classes not described at al using like jajb id a string that starts with ‘# and continues
with the class name, for example fore the class person ‘#it.bean.test.Person’; you can make a complete
combination between xml context, annotation context and no description; you can also describe the same
class in both xml and annotation context and use at the same time the three possible kind of mapping by
using desired jgjb id.

2) @FieldAnnotation: is a method annotation that you can apply generaly to the getter method of the bean you
want to map; now let’slook at the @FiledAnnotation attributes:

- name: represents the attribute name in the JSON representation of the entity; if you don't use property
attribute, means that the bean attribute name is the same respect to JSON attribute name, so it must be equals
to correspondent JSON attribute name and it can be not equals to correspondent bean attribute name. This
attribute is mandatory.

- property: represents the bean attribute name you want to associate to JSON attribute name chosen for name
attribute initiaization. If JSON attribute name and bean attribute name are exactly equals you don’t need to
use property attribute: you can specify both equals JSON attribute name and bean attribute name using name
attribute. This attribute isn’t mandatory.

- factory, refld, type: these three attributes are globally described because there' s arelation between their; first
of al let's talk about attributes priority: the usage priority is factory-refld-type so if you use al three
attributes, only factory will be considered for binding; if you use refld, converter and type, only refld will be
considered for binding. That means if you want use one of these attributes you can don’'t use the other two,
only one of these four attribute is mandatory according to your needs. Now ook at specific attribute meaning:

o factory: you must initialize this attribute with the class of your
i t.dangel o. j avabi ndi ng. f act ory. Bi ndi ngFact ory interface implementation (See javabinding
documentation for more info).

o refld: if afied is another described bean you must initialize this attribute with chosen id for bean
represented by this field. For possible values of refld, look at the considerations made before about
extend attribute of @EntityAnnotation

0 type you can initialize this attribute with the Class of the field. Usualy, this attribute is used to
describe primitive or Wrappers type. If you use aso collectionType attribute (see below) you must
initialize this attribute with the Class of components of collection.

- collectionType: you can use this attribute when the correspondent java bean attribute is an array or a
collection. If you use this attribute the type attribute will be the component type of the array or collection. You
can initialize this attribute with your collection or array class type. This attribute isn’t mandatory.

- converter: you should initialize this attribute with the class of your particular implementation of
i t.dangel o.j avabi ndi ng. converters. Converter. If you use this attribute in couple with collectionType
attribute, the collection’s elements will be passed to the specified converter; if you want to pass the entire
collection to the specified converter, don’t use the collectionType attribute, but only converter attribute (and
obviously name, property, refld, etc.). This attribute isn’t mandatory.

- setter: you can use this attribute when in your JSONODbject there's an attribute that corresponds to a private
attribute in your entity. You can initialize this attribute with %number (for example %2) that represents its
index like parameter of the constructor that will be invoked build your java bean. In this case you have to
implement a constructor for non accessible attribute with correct type and order of parameters; otherwise,
instead of %number, you can initialize this attribute with the setter name of the field you’ re describing if it
doesn’t respect the java beans naming convention. Remember that if you define a particular constructor, you
should explicitly redefine the default constructor! This attribute isn’t mandatory.

- getter: you can use this attribute when in your JavaBean the getter correspondent to field in witch you are
using it doesn’t respect the naming convention (for example: if your java bean attribute name is dog, but its
getter name isn't getDog but retrieveDog you can initialize the attribute getter with “retreiveDog” string. This
attribute isn’t mandatory.

Now let’s look to the following complete example:

/1 Cl ass Person
package bean;

import java.util. Date,;

@nti tyAnnot ati on

public class Person {
private String nane;
private String surnane;
private |nteger age;
private String[] studylLevels;
private DrivingLicence drivingLicence;
private Date birthday;
private int[] elenments;
private List<String> noreEl enents;
private Dog dog;

public Person() {}
/1 LOOK AT THE CONSTRUCOTR FOR ATTRI BUTE age that have setter="9%®" in its own
@i el dAnnot at i on
public Person(lnteger age) {
this.age = age;
}

@i el dAnnot at i on(nane="dog", refld="#bean. Dog")
public Dog getDog() {
return dog;
}

public void setDog(Dog dog) {
t hi s. dog = dog;
}

@i el dAnnot at i on(nanme="nor eEl ements", type=String.class ,collectionType=ArraylList.class)
public List<String> getMreEl enents() {
return noreEl enents;

public void setMreEl ements(List<String> noreEl enents) {
this. noreEl ements = noreEl enents;
}

@i el dAnnot ati on(nane="el enents", type=lnteger.TYPE ,collectionType=int[].class)
public int[] getElenments() {
return el ements;

public void setEl enents(int[] elenents) {
this.elenents = el enents;
}

@i el dAnnot ati on(name="bhi rt hDate", col | ecti onType=Date[]. cl ass, convert er=Dat eConverter. cl ass)
public Date getBirthDate() {
return birthDate;

}

public void setBirthDay(Date birthDay) ({
this.birthDate = birthDay;

}

@i el dAnnot ati on(nanme="surnane", type=String.cl ass)
public String getSurname() {
return surnamng;

public void setSurnane(String surname) ({
this.surnane = surnane
}

@i el dAnnot at i on(nanme="age", type=lnteger.class, setter="%")
public Integer getAge() {
return age
}

@i el dAnnot ati on(name="none", type=String.class, getter="retri eveNaneVal ue")
public String retrieveNameVal ue() ({
return nang;
}

public void setNanmeVal ue(String nane) {
this. nane = nane;
}

@i el dAnnot ati on(nanme="dri vi ngLi cence", factory=Li cenceBi ndi ngFactory. cl ass)
public DrivingLicence getDrivingLicence() {
return drivinglLicence;

public void setDrivingLicence(DrivingLicence drivingLicence) {
this.drivingLicence = drivingLi cence;
}

@i el dAnnot ati on(nanme="studyLevel s", type=String.class collectionType=String[].class)
public String[] getStudyLevel s() {
return studylLevels;

}

public void setStudyLevel s(String[] studyLevels) {
this.studylLevel s= studylLevel s;

}

/1 ass DrivingLicence
package bean;

public class DrivingLicence {
private String nation;
private |nteger year;
public Integer getYear() {
return year;
}

public void setYear(Integer year) {
this.year= year;

}
public String getNation() {
return nation;

public void setNation(String nation) {
this. nation= nation;
}

}

/1 ass DrivingLi cenceSpeci al
package bean;

public class DrivingLi cenceSpeci al extends DrivingLi cence {
private String hp;
public String getHp() {
return hp;

}

public void setHp (String hp) {
this.hp = hp;

}

}

/1 Cl ass Dog
package bean;

public class Dog {
private String race;
public String getRace() {
return race;

public void setRace (String race) {
this.race = race;
}

Now let’s talk about refld attribute for the last time:

For the dog property we have defined refld="#bean.Dog”. That means jajb will make a direct correspondence
between Dog class and dog JSONODbject; but we can use also use “ @bean.Dog” (annotated refld) that means
jab will use the annotation configuration information for Dog class, obvioudy, if Dog hasn’t
@EntityAnnotation an exception will be threw; at least we can use “$mydog” (xml context refld) that means
jajb will use the xml context configuration information for Dog class; obvioudly if you didn’'t describe Dog
into xml context or “$mydog” is awrong refld an exception will be threw.

At least, how to instantiate JAJB?

If you use an xml context you should instantiate JAJB like below:

I nput St ream xm Cont ext = new Fil el nput Streanm("/ hone/ gabriele/jajb-config.xm");
JAJB jajb = JAJB. newl nstance(xnl Cont ext);

Elseif you don’t use an xml context you can instantiate JAJB like below:

JAIJB jajb = JAJB. newl nstance();

Remember you must always apply a cast to unmarshalling methods result like below:

We suppose to have a jsonString that represents a Person object and we want to unmarshall this jsonString
using the annotated description of Person class:

String personJson = "{\"nanme\":\"gabriele\",\"surnane\":\"negro\", and so on}";
Person person = (Person)jajb.unmarshal |l (personJsonString, "@ean. Person");

ENJOY!

